Universal homogeneous structures in ZFC (Joint work with Antonio Avilés)

Wiesław Kubiś

Czech Academy of Sciences (CZECH REPUBLIC)

and Jan Kochanowski University, Kielce (POLAND) http://www.ujk.edu.pl/~wkubis/

Winter School in Abstract Analysis, Hejnice 2012

< 回 > < 三 > < 三 >

Classical Fraïssé theory

The setup: Fraïssé class

- \mathscr{F} is a class of finitely generated structures.
- Joint Embedding Property: Given X, Y ∈ 𝔅, there is Z ∈ 𝔅 such that both X → Z and Y → Z.
- Amalgamation Property: Given embeddings *i*: Z → X, *j*: Z → Y with Z, X, Y ∈ 𝔅, there exists W ∈ 𝔅 such that for some embeddings the diagram

commutes.

< ロ > < 同 > < 回 > < 回 >

Classical Fraïssé theory

The setup: Fraïssé class

- \mathscr{F} is a class of finitely generated structures.
- Joint Embedding Property: Given X, Y ∈ ℱ, there is Z ∈ ℱ such that both X → Z and Y → Z.
- Amalgamation Property: Given embeddings *i*: Z → X, *j*: Z → Y with Z, X, Y ∈ 𝔅, there exists W ∈ 𝔅 such that for some embeddings the diagram

commutes.

< ロ > < 同 > < 回 > < 回 >

Classical Fraïssé theory

The setup: Fraïssé class

- \mathscr{F} is a class of finitely generated structures.
- Joint Embedding Property: Given X, Y ∈ 𝔅, there is Z ∈ 𝔅 such that both X → Z and Y → Z.
- Amalgamation Property: Given embeddings *i*: Z → X, *j*: Z → Y with Z, X, Y ∈ 𝔅, there exists W ∈ 𝔅 such that for some embeddings the diagram

commutes.

< 回 > < 三 > < 三 >

$$\sigma\mathscr{F} := \left\{ \bigcup_{n \in \omega} X_n \colon \{X_n\}_{n \in \omega} \subseteq \mathscr{F} \text{ is a chain} \right\}$$

Theorem

Let \mathscr{F} be a countable Fraïssé class. Then there exists a unique, up to isomorphism, countable structure $U = \text{Flim } \mathscr{F}$, satisfying the following conditions.

- $U \in \sigma \mathscr{F}.$
- ② Given \mathscr{F} -structures $X \subseteq Y$, given an embedding e: $X \hookrightarrow U$, there exists an embedding f: $Y \hookrightarrow U$ such that f ↾ X = e.
- Every *F*-structure embeds into U.

< 回 ト < 三 ト < 三

$$\sigma\mathscr{F} := \left\{ \bigcup_{n \in \omega} X_n \colon \{X_n\}_{n \in \omega} \subseteq \mathscr{F} \text{ is a chain} \right\}$$

Theorem

Let \mathscr{F} be a countable Fraïssé class. Then there exists a unique, up to isomorphism, countable structure $U = \text{Flim } \mathscr{F}$, satisfying the following conditions.

- $\bigcirc U \in \sigma \mathscr{F}$
- ② Given \mathscr{F} -structures $X \subseteq Y$, given an embedding $e: X \hookrightarrow U$, there exists an embedding $f: Y \hookrightarrow U$ such that $f \upharpoonright X = e$.
- Every *F*-structure embeds into U.

$$\sigma\mathscr{F} := \left\{ \bigcup_{n \in \omega} X_n \colon \{X_n\}_{n \in \omega} \subseteq \mathscr{F} \text{ is a chain} \right\}$$

Theorem

Let \mathscr{F} be a countable Fraïssé class. Then there exists a unique, up to isomorphism, countable structure $U = \text{Flim } \mathscr{F}$, satisfying the following conditions.

• $U \in \sigma \mathscr{F}$.

- ② Given \mathscr{F} -structures $X \subseteq Y$, given an embedding $e: X \hookrightarrow U$, there exists an embedding $f: Y \hookrightarrow U$ such that $f \upharpoonright X = e$.
- Every *F*-structure embeds into U.

< 回 > < 三 > < 三 >

$$\sigma\mathscr{F} := \left\{ \bigcup_{n \in \omega} X_n \colon \{X_n\}_{n \in \omega} \subseteq \mathscr{F} \text{ is a chain} \right\}$$

Theorem

Let \mathscr{F} be a countable Fraïssé class. Then there exists a unique, up to isomorphism, countable structure $U = \text{Flim } \mathscr{F}$, satisfying the following conditions.

- $U \in \sigma \mathscr{F}$.
- ② Given \mathscr{F} -structures $X \subseteq Y$, given an embedding e: $X \hookrightarrow U$, there exists an embedding f: Y ↔ U such that $f \upharpoonright X = e$.

Every *F*-structure embeds into U.

イロト イ団ト イヨト イヨト

$$\sigma\mathscr{F} := \left\{ \bigcup_{n \in \omega} X_n \colon \{X_n\}_{n \in \omega} \subseteq \mathscr{F} \text{ is a chain} \right\}$$

Theorem

Let \mathscr{F} be a countable Fraïssé class. Then there exists a unique, up to isomorphism, countable structure $U = \text{Flim } \mathscr{F}$, satisfying the following conditions.

- $U \in \sigma \mathscr{F}.$
- ② Given ℱ-structures X ⊆ Y, given an embedding e: X → U, there exists an embedding f: Y → U such that f ↾ X = e.
- Severy *F*-structure embeds into U.

A (10) A (10)

Homogeneity & Universality

Theorem (Homogeneity)

Let \mathscr{F} be a countable Fraïssé class and let $U = \text{Flim } \mathscr{F}$. Then for every substructures $E, F \subseteq U$ such that $E, F \in \mathscr{F}$, every isomorphism $h: E \to F$ extends to an automorphism $H: U \to U$.

Theorem (Universality)

For every $X \in \sigma \mathscr{F}$ there exists an embedding $X \hookrightarrow U$.

・ロト ・ 四ト ・ ヨト ・ ヨト

Homogeneity & Universality

Theorem (Homogeneity)

Let \mathscr{F} be a countable Fraïssé class and let $U = \text{Flim } \mathscr{F}$. Then for every substructures $E, F \subseteq U$ such that $E, F \in \mathscr{F}$, every isomorphism $h: E \to F$ extends to an automorphism $H: U \to U$.

Theorem (Universality)

For every $X \in \sigma \mathscr{F}$ there exists an embedding $X \hookrightarrow U$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Question

What to do if \mathscr{F} is uncountable?

Example

Finite metric spaces.

イロト イヨト イヨト イヨト

Question

What to do if \mathscr{F} is uncountable?

Example

Finite metric spaces.

The setup:

A cardinal $\kappa \ge \aleph_0$ is given.

- $\bullet \ {\mathscr F}$ has both the Joint Embedding and the Amalgamation Property.
- Each member of \mathscr{F} should have size $< \kappa$.
- \mathscr{F} is closed under unions of chains of length $< \kappa$.

Quite often, $|\mathscr{F}| = \kappa^{<\kappa}$.

Typical assumption:

$$\kappa^{<\kappa} = \kappa$$

< ロ > < 同 > < 回 > < 回 >

The setup:

A cardinal $\kappa \ge \aleph_0$ is given.

- $\bullet \ {\mathscr F}$ has both the Joint Embedding and the Amalgamation Property.
- Each member of \mathscr{F} should have size $< \kappa$.

• \mathscr{F} is closed under unions of chains of length $< \kappa$.

Quite often, $|\mathscr{F}| = \kappa^{<\kappa}$.

Typical assumption:

$$\kappa^{<\kappa} = \kappa$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The setup:

A cardinal $\kappa \ge \aleph_0$ is given.

- $\bullet \ {\mathscr F}$ has both the Joint Embedding and the Amalgamation Property.
- Each member of \mathscr{F} should have size $< \kappa$.
- \mathscr{F} is closed under unions of chains of length $< \kappa$.

Quite often, $|\mathscr{F}| = \kappa^{<\kappa}$.

Typical assumption:

$$\kappa^{<\kappa} = \kappa$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The setup:

A cardinal $\kappa \ge \aleph_0$ is given.

- $\bullet \ {\mathscr F}$ has both the Joint Embedding and the Amalgamation Property.
- Each member of \mathscr{F} should have size $< \kappa$.
- \mathscr{F} is closed under unions of chains of length $< \kappa$.

Quite often, $|\mathscr{F}| = \kappa^{<\kappa}$.

Typical assumption:

$$\kappa^{<\kappa} = \kappa$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

6/26

The setup:

A cardinal $\kappa \ge \aleph_0$ is given.

- F has both the Joint Embedding and the Amalgamation Property.
- Each member of \mathscr{F} should have size $< \kappa$.
- \mathscr{F} is closed under unions of chains of length $< \kappa$.

Quite often, $|\mathscr{F}| = \kappa^{<\kappa}$.

Typical assumption:

$$\kappa^{<\kappa} = \kappa$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\mathfrak{S}_{\kappa}(\mathscr{F}) := \Big\{\bigcup_{\alpha < \kappa} X_{\alpha} \colon \{X_{\alpha}\}_{\alpha < \kappa} \subseteq \mathscr{F} \text{ is a chain} \Big\}$$

Theorem

Let \mathscr{F} be a κ -Fraïssé class, where κ is a regular cardinal and $|\mathscr{F}| = \kappa$. Then there exists a unique, up to isomorphism, structure $U_{\kappa} = \text{Flim } \mathscr{F}$ of size κ , satisfying the following conditions.

$1 U_{\kappa} \in \mathfrak{S}_{\kappa}(\mathscr{F}).$

- ② Given \mathscr{F} -structures $X \subseteq Y$, given an embedding $f : X \hookrightarrow U_{\kappa}$, there exists an embedding $g : Y \hookrightarrow U_{\kappa}$ such that $g \upharpoonright X = f$.
- Every *F*-structure embeds into U.

< 回 ト < 三 ト < 三

$$\mathfrak{S}_{\kappa}(\mathscr{F}) := \Big\{\bigcup_{\alpha < \kappa} X_{\alpha} \colon \{X_{\alpha}\}_{\alpha < \kappa} \subseteq \mathscr{F} \text{ is a chain} \Big\}$$

Theorem

Let \mathscr{F} be a κ -Fraïssé class, where κ is a regular cardinal and $|\mathscr{F}| = \kappa$. Then there exists a unique, up to isomorphism, structure $U_{\kappa} = \operatorname{Flim} \mathscr{F}$ of size κ , satisfying the following conditions.

- ② Given ℱ-structures X ⊆ Y, given an embedding f: X → U_κ, there exists an embedding g: Y → U_κ such that g ↾ X = f.
- Every *F*-structure embeds into U.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\mathfrak{S}_{\kappa}(\mathscr{F}) := \Big\{\bigcup_{\alpha < \kappa} X_{\alpha} \colon \{X_{\alpha}\}_{\alpha < \kappa} \subseteq \mathscr{F} \text{ is a chain} \Big\}$$

Theorem

Let \mathscr{F} be a κ -Fraïssé class, where κ is a regular cardinal and $|\mathscr{F}| = \kappa$. Then there exists a unique, up to isomorphism, structure $U_{\kappa} = \operatorname{Flim} \mathscr{F}$ of size κ , satisfying the following conditions.

•
$$U_{\kappa} \in \mathfrak{S}_{\kappa}(\mathscr{F}).$$

② Given ℱ-structures X ⊆ Y, given an embedding f: X → U_κ, there exists an embedding g: Y → U_κ such that g ↾ X = f.

Every *F*-structure embeds into U.

< 回 > < 三 > < 三 >

$$\mathfrak{S}_{\kappa}(\mathscr{F}) := \Big\{\bigcup_{\alpha < \kappa} X_{\alpha} \colon \{X_{\alpha}\}_{\alpha < \kappa} \subseteq \mathscr{F} \text{ is a chain} \Big\}$$

Theorem

Let \mathscr{F} be a κ -Fraïssé class, where κ is a regular cardinal and $|\mathscr{F}| = \kappa$. Then there exists a unique, up to isomorphism, structure $U_{\kappa} = \operatorname{Flim} \mathscr{F}$ of size κ , satisfying the following conditions.

•
$$U_{\kappa} \in \mathfrak{S}_{\kappa}(\mathscr{F}).$$

② Given ℱ-structures X ⊆ Y, given an embedding f: X → U_κ, there exists an embedding g: Y → U_κ such that g ↾ X = f.

Every *F*-structure embeds into U.

イロト イ団ト イヨト イヨト

$$\mathfrak{S}_{\kappa}(\mathscr{F}) := \Big\{\bigcup_{\alpha < \kappa} X_{\alpha} \colon \{X_{\alpha}\}_{\alpha < \kappa} \subseteq \mathscr{F} \text{ is a chain} \Big\}$$

Theorem

Let \mathscr{F} be a κ -Fraïssé class, where κ is a regular cardinal and $|\mathscr{F}| = \kappa$. Then there exists a unique, up to isomorphism, structure $U_{\kappa} = \operatorname{Flim} \mathscr{F}$ of size κ , satisfying the following conditions.

$$\ \, {\sf U}_\kappa\in\mathfrak{S}_\kappa(\mathscr{F}).$$

- ② Given ℱ-structures X ⊆ Y, given an embedding f: X → U_κ, there exists an embedding g: Y → U_κ such that g ↾ X = f.
- Severy *F*-structure embeds into U.

A (10) A (10)

Fact

There are c many finite metric spaces.

Fact

If $c^{<c} = c$ then

 $\mathscr{M} := \{ \langle X, d \rangle : \langle X, d \rangle \text{ is a metric space and } |X| < \mathfrak{c} \}$

is a c-Fraïssé-Jónsson class.

It may happen that

 $\mathfrak{c}^{<\mathfrak{c}}\gg\mathfrak{c}$

But we'd like to have a homogeneous structure of size c ...

< ロ > < 同 > < 回 > < 回 >

Fact

There are c many finite metric spaces.

Fact

If $\mathfrak{c}^{<\mathfrak{c}}=\mathfrak{c}$ then

 $\mathscr{M} := \{ \langle X, d \rangle : \langle X, d \rangle \text{ is a metric space and } |X| < \mathfrak{c} \}$

is a c-Fraïssé-Jónsson class.

It may happen that

 $\mathfrak{c}^{<\mathfrak{c}}\gg\mathfrak{c}$

But we'd like to have a homogeneous structure of size c ...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Assume cf(c) = c. There exists a unique Boolean algebra \mathfrak{B} satisfying the following conditions.

$$|\mathfrak{B}| = \mathfrak{c}$$
 and \mathfrak{B} is tightly σ -filtered.

2 Given Boolean algebras A ≤ C such that |C| < c and A is a σ-subalgebra of C, every embedding e: A → 𝔅 extends to an embedding f: C → 𝔅.

Fact

$$\mathfrak{c} = \aleph_1 \implies \mathfrak{B} \approx \mathscr{P}(\omega)/_{[\omega]^{\leq \omega}}.$$

Theorem (Dow & Hart 2002)

In the \aleph_2 -Cohen model, $\mathfrak{B} \approx \mathscr{P}(\omega)/_{[\omega]^{<\omega}}$.

Theorem (Geschke 2002)

 $\mathfrak{c} > \aleph_1 \implies \mathfrak{B} \not\approx \mathscr{P}(\omega)/_{[\omega]^{<\omega}}.$

Assume cf(c) = c. There exists a unique Boolean algebra \mathfrak{B} satisfying the following conditions.

- **()** $|\mathfrak{B}| = \mathfrak{c}$ and \mathfrak{B} is tightly σ -filtered.
- ② Given Boolean algebras A ≤ C such that |C| < c and A is a σ-subalgebra of C, every embedding e: A → 𝔅 extends to an embedding f: C → 𝔅.

Fact

 $\mathfrak{c} = \aleph_1 \implies \mathfrak{B} \approx \mathscr{P}(\omega)/_{[\omega]^{<\omega}}.$

Theorem (Dow & Hart 2002)

In the \aleph_2 -Cohen model, $\mathfrak{B} \approx \mathscr{P}(\omega)/_{[\omega]^{<\omega}}$.

Theorem (Geschke 2002)

 $\mathfrak{c} > leph_1 \implies \mathfrak{B}
ot\approx \mathscr{P}(\omega)/_{[\omega]^{<\omega}}.$

Assume cf(c) = c. There exists a unique Boolean algebra \mathfrak{B} satisfying the following conditions.

- **()** $|\mathfrak{B}| = \mathfrak{c}$ and \mathfrak{B} is tightly σ -filtered.
- ② Given Boolean algebras A ≤ C such that |C| < c and A is a σ-subalgebra of C, every embedding e: A → 𝔅 extends to an embedding f: C → 𝔅.

Fact

$$\mathfrak{c} = \aleph_1 \implies \mathfrak{B} \approx \mathscr{P}(\omega)/_{[\omega]^{<\omega}}.$$

Theorem (Dow & Hart 2002)

In the $leph_2$ -Cohen model, $\mathfrak{B} pprox \mathscr{P}(\omega)/_{[\omega]^{<\omega}}$.

Theorem (Geschke 2002)

 $\mathfrak{c} > \aleph_1 \implies \mathfrak{B} \not\approx \mathscr{P}(\omega)/_{[\omega]^{<\omega}}.$

Assume cf(c) = c. There exists a unique Boolean algebra \mathfrak{B} satisfying the following conditions.

1
$$|\mathfrak{B}| = \mathfrak{c}$$
 and \mathfrak{B} is tightly σ -filtered.

② Given Boolean algebras A ≤ C such that |C| < c and A is a σ-subalgebra of C, every embedding e: A → 𝔅 extends to an embedding f: C → 𝔅.

Fact

$$\mathfrak{c} = leph_1 \implies \mathfrak{B} pprox \mathscr{P}(\omega)/_{[\omega]^{<\omega}}.$$

Theorem (Dow & Hart 2002)

In the \aleph_2 -Cohen model, $\mathfrak{B} \approx \mathscr{P}(\omega)/_{[\omega]^{<\omega}}$.

Theorem (Geschke 2002)

 $\mathfrak{c} > leph_1 \implies \mathfrak{B}
ot\approx \mathscr{P}(\omega)/_{[\omega]^{<\omega}}.$

Assume cf(c) = c. There exists a unique Boolean algebra \mathfrak{B} satisfying the following conditions.

$$|\mathfrak{B}| = \mathfrak{c}$$
 and \mathfrak{B} is tightly σ -filtered.

② Given Boolean algebras A ≤ C such that |C| < c and A is a σ-subalgebra of C, every embedding e: A → 𝔅 extends to an embedding f: C → 𝔅.

Fact

$$\mathfrak{c} = leph_1 \implies \mathfrak{B} pprox \mathscr{P}(\omega)/_{[\omega]^{<\omega}}.$$

Theorem (Dow & Hart 2002)

In the $leph_2$ -Cohen model, $\mathfrak{B} pprox \mathscr{P}(\omega)/_{[\omega]^{<\omega}}$.

Theorem (Geschke 2002)

 $\mathfrak{c} > leph_1 \implies \mathfrak{B}
ot\approx \mathscr{P}(\omega)/_{[\omega]^{<\omega}}.$

Assume cf(c) = c. There exists a unique Banach space \mathfrak{X} satisfying the following conditions.

- dens(\mathfrak{X}) = c and \mathfrak{X} is tightly σ -filtered.
- ② Given Banch spaces A ≤ C such that dens(C) < c and C is a tight extension of A, every embedding e: A → X extends to an embedding f: C → X.

< 口 > < 同 > < 回 > < 回 > < 回 > <

Assume cf(c) = c. There exists a unique Banach space \mathfrak{X} satisfying the following conditions.

- dens(\mathfrak{X}) = c and \mathfrak{X} is tightly σ -filtered.
- ② Given Banch spaces A ≤ C such that dens(C) < c and C is a tight extension of A, every embedding e: A → X extends to an embedding f: C → X.</p>

Main ingredient: pushouts

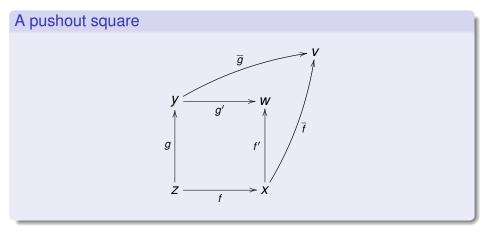
A pushout square v W g′ g f′ Ζ *≻ X*

f

W.Kubiś (http://www.ujk.edu.pl/~wkubis/) Universal homogeneous structures Febru

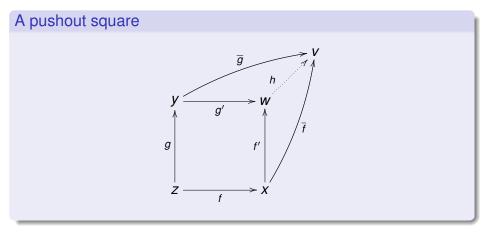
3 > 4 3

Main ingredient: pushouts



3 > 4 3

Main ingredient: pushouts



3 > 4 3

< 17 ▶

Claim

Let $A \leq B$ be Boolean algebras such that B is finitely generated over A. The following properties are equivalent:

- **()** A is a σ -subalgebra of B.
- 2 There exist countable Boolean algebras $C \leq D$ and embeddings for which

is a pushout square.

A (10) A (10)

Claim

Let $A \leq B$ be Boolean algebras such that B is finitely generated over A. The following properties are equivalent:

- **()** A is a σ -subalgebra of B.
- ② There exist countable Boolean algebras C ≤ D and embeddings for which

is a pushout square.

∃ ► < ∃ ►</p>

< (17) × <

Assumptions:

 \Im \mathscr{F} is a class of "small" objects.

🕼 F has pushouts.

Goal:

We'd like to have for each $\kappa \ge |\mathscr{F}|$ an object \mathfrak{X}_{κ} satisfying:

- \mathfrak{X}_{κ} has size κ and is the union (limit) of a directed system of objects from \mathscr{F} .
- ② $\mathscr{F} \subseteq \mathscr{L}$, where \mathscr{L} is a class of arbitrarily "large" objects of the same language.
- If \mathfrak{X}_{κ} contains isomorphic copy of every object from \mathscr{F} .
- (4) \mathfrak{X}_{κ} is \mathscr{F} -homogeneous.

Assumptions:

 \mathscr{F} is a class of "small" objects.

☞ ℱ has pushouts.

Goal:

We'd like to have for each $\kappa \ge |\mathscr{F}|$ an object \mathfrak{X}_{κ} satisfying:

- \mathfrak{X}_{κ} has size κ and is the union (limit) of a directed system of objects from \mathscr{F} .
- ② $\mathscr{F} \subseteq \mathscr{L}$, where \mathscr{L} is a class of arbitrarily "large" objects of the same language.
- If \mathfrak{X}_{κ} contains isomorphic copy of every object from \mathscr{F} .
- (4) \mathfrak{X}_{κ} is \mathscr{F} -homogeneous.

3

Assumptions:

 \mathscr{F} is a class of "small" objects.

☞ ℱ has pushouts.

Goal:

We'd like to have for each $\kappa \ge |\mathscr{F}|$ an object \mathfrak{X}_{κ} satisfying:

- \mathfrak{X}_{κ} has size κ and is the union (limit) of a directed system of objects from \mathscr{F} .
- ② $\mathscr{F} \subseteq \mathscr{L}$, where \mathscr{L} is a class of arbitrarily "large" objects of the same language.
- 3 \mathfrak{X}_{κ} contains isomorphic copy of every object from $\mathscr{F}.$
- $\textcircled{0} \mathfrak{X}_\kappa$ is \mathscr{F} -homogeneous.

3

Assumptions:

 \mathscr{F} is a class of "small" objects.

☞ ℱ has pushouts.

Goal:

We'd like to have for each $\kappa \ge |\mathscr{F}|$ an object \mathfrak{X}_{κ} satisfying:

- X_κ has size κ and is the union (limit) of a directed system of objects from *F*.
- ② $\mathscr{F} \subseteq \mathscr{L}$, where \mathscr{L} is a class of arbitrarily "large" objects of the same language.
- 3 \mathfrak{X}_{κ} contains isomorphic copy of every object from \mathscr{F} .
- $\textcircled{0} \mathfrak{X}_\kappa$ is \mathscr{F} -homogeneous.

Assumptions:

 \mathscr{F} is a class of "small" objects.

☞ ℱ has pushouts.

Goal:

We'd like to have for each $\kappa \ge |\mathscr{F}|$ an object \mathfrak{X}_{κ} satisfying:

- \$\mathcal{X}_{\kappa}\$ has size \(\kappa\) and is the union (limit) of a directed system of objects from \$\mathcal{F}\$.
- 2 $\mathscr{F} \subseteq \mathscr{L}$, where \mathscr{L} is a class of arbitrarily "large" objects of the same language.
- $\textcircled{3} \mathfrak{X}_\kappa$ contains isomorphic copy of every object from $\mathscr{F}.$
- ④ \mathfrak{X}_κ is \mathscr{F} -homogeneous.

Assumptions:

 \mathscr{F} is a class of "small" objects.

☞ ℱ has pushouts.

Goal:

We'd like to have for each $\kappa \ge |\mathscr{F}|$ an object \mathfrak{X}_{κ} satisfying:

- \$\mathcal{X}_{\kappa}\$ has size \(\kappa\) and is the union (limit) of a directed system of objects from \$\mathcal{F}\$.
- 2 $\mathscr{F} \subseteq \mathscr{L}$, where \mathscr{L} is a class of arbitrarily "large" objects of the same language.
- **③** \mathfrak{X}_{κ} contains isomorphic copy of every object from \mathscr{F} .

④ \mathfrak{X}_{κ} is \mathscr{F} -homogeneous

Assumptions:

 \mathscr{F} is a class of "small" objects.

☞ ℱ has pushouts.

Goal:

We'd like to have for each $\kappa \ge |\mathscr{F}|$ an object \mathfrak{X}_{κ} satisfying:

- \$\mathcal{X}_{\kappa}\$ has size \(\kappa\) and is the union (limit) of a directed system of objects from \$\mathcal{F}\$.
- 2 $\mathscr{F} \subseteq \mathscr{L}$, where \mathscr{L} is a class of arbitrarily "large" objects of the same language.
- **③** \mathfrak{X}_{κ} contains isomorphic copy of every object from \mathscr{F} .
- $\textcircled{9} \mathfrak{X}_{\kappa} \text{ is } \mathscr{F} \text{-homogeneous.}$

An embedding $e: A \rightarrow B$ is \mathscr{F} -tight if there are $a, b \in \mathscr{F}$ and embeddings $a \rightarrow b, a \rightarrow A, b \rightarrow B$, such that

is a pushout square.

A (10) A (10)

Let $A, B \in \mathscr{L}$. We say that *B* is \mathscr{F} -tightly filtered over *A* if there exists a continuous chain $\{A_{\xi}\}_{\xi \in \delta} \subseteq \mathscr{L}$ such that

Definition

$$\mathcal{T}_{\kappa} := \{ X \in \mathscr{L} : X \text{ is } \mathscr{F}\text{-tightly filtered of size } \leqslant \kappa \}.$$
$$\mathcal{T}_{<\kappa} := \bigcup_{\lambda < \kappa} \mathscr{T}_{\lambda}.$$

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

Let $A, B \in \mathscr{L}$. We say that *B* is \mathscr{F} -tightly filtered over *A* if there exists a continuous chain $\{A_{\xi}\}_{\xi \leq \delta} \subseteq \mathscr{L}$ such that

•
$$A_0 = A, A_{\delta} = B,$$

2
$$A_{\xi} \subseteq A_{\xi+1}$$
 is \mathscr{F} -tight for each $\xi < \delta$

Definition

$$\mathcal{T}_{\kappa} := \{ X \in \mathscr{L} : X \text{ is } \mathscr{F}\text{-tightly filtered of size } \leqslant \kappa \}.$$
$$\mathcal{T}_{<\kappa} := \bigcup_{\lambda < \kappa} \mathscr{T}_{\lambda}.$$

э

Let $A, B \in \mathscr{L}$. We say that *B* is \mathscr{F} -tightly filtered over *A* if there exists a continuous chain $\{A_{\xi}\}_{\xi \leq \delta} \subseteq \mathscr{L}$ such that

Definition

$$\mathscr{T}_{\kappa} := \{ X \in \mathscr{L} : X \text{ is } \mathscr{F}\text{-tightly filtered of size } \leqslant \kappa \}.$$

 $\mathscr{T}_{<\kappa} := \bigcup_{\lambda < \kappa} \mathscr{T}_{\lambda}.$

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

Terminology from algebra

\mathscr{F} -tight filtration = relative \mathscr{F} -cell complex

Reference:

M. HOVEY, *Model Categories*, Mathematical Surveys and Monographs 63, AMS, 1999

A (10) A (10)

16/26

Let \mathscr{F} be the class of all countable Boolean algebras.

Then \mathscr{T}_{κ} is the class of tightly σ -filtered Boolean algebras of size $\leqslant \kappa$.

Example Let \mathscr{F} be the class of all finite Boolean algebras. Then \mathscr{T}_{κ} is the class of all projective Boolean algebras.

< ロ > < 同 > < 回 > < 回 >

Let \mathscr{F} be the class of all countable Boolean algebras. Then \mathscr{T}_{κ} is the class of tightly σ -filtered Boolean algebras of size $\leqslant \kappa$.

Example

Let \mathscr{F} be the class of all finite Boolean algebras. Then \mathscr{T}_{κ} is the class of all projective Boolean algebras.

< ロ > < 同 > < 回 > < 回 >

Let \mathscr{F} be the class of all countable Boolean algebras. Then \mathscr{T}_{κ} is the class of tightly σ -filtered Boolean algebras of size $\leqslant \kappa$.

Example

Let \mathscr{F} be the class of all finite Boolean algebras. Then \mathscr{T}_{κ} is the class of all projective Boolean algebras.

Let \mathscr{F} be the class of all countable Boolean algebras. Then \mathscr{T}_{κ} is the class of tightly σ -filtered Boolean algebras of size $\leqslant \kappa$.

Example

Let \mathscr{F} be the class of all finite Boolean algebras. Then \mathscr{T}_{κ} is the class of all projective Boolean algebras.

A (10) A (10)

Main result

Theorem

Let \mathscr{F} be as before, and let $\kappa \ge |\mathscr{F}| + \aleph_0$. There exists a unique object $\mathfrak{X}_{\kappa} \in \mathscr{T}_{\kappa}$ satisfying the following conditions:

- Solution For every object in X ∈ 𝒯_κ there exists a relative 𝒯 -cell complex from X to 𝔅_κ.
- ② Given an ℱ-tight inclusion A ⊆ B with A, B ∈ 𝔅_{<κ}, every embedding e: A → 𝔅_κ extends to an embedding f : B → 𝔅_κ.

Main result

Theorem

Let \mathscr{F} be as before, and let $\kappa \ge |\mathscr{F}| + \aleph_0$. There exists a unique object $\mathfrak{X}_{\kappa} \in \mathscr{T}_{\kappa}$ satisfying the following conditions:

- Solution For every object in X ∈ 𝔅_κ there exists a relative 𝔅 -cell complex from X to 𝔅_κ.
- ② Given an ℱ-tight inclusion A ⊆ B with A, B ∈ 𝔅_{<κ}, every embedding e: A → 𝔅_κ extends to an embedding f : B → 𝔅_κ.

A (10) A (10)

Main result

Theorem

Let \mathscr{F} be as before, and let $\kappa \ge |\mathscr{F}| + \aleph_0$. There exists a unique object $\mathfrak{X}_{\kappa} \in \mathscr{T}_{\kappa}$ satisfying the following conditions:

- Solution For every object in X ∈ 𝔅_κ there exists a relative 𝔅 -cell complex from X to 𝔅_κ.
- **2** Given an \mathscr{F} -tight inclusion $A \subseteq B$ with $A, B \in \mathscr{T}_{<\kappa}$, every embedding $e \colon A \to \mathfrak{X}_{\kappa}$ extends to an embedding $f \colon B \to \mathfrak{X}_{\kappa}$.

∃ ► < ∃ ►</p>

4 A & 4

Theorem

Assume A, $B \subseteq \mathfrak{X}_{\kappa}$ are such that $A, B \in \mathscr{T}_{<\kappa}$ and \mathfrak{X}_{κ} is \mathscr{F} -tightly filtered over both A and B.

Then every isomorphism between A and B extends to an automorphism of \mathfrak{X}_{κ} .

Corollary

The object \mathfrak{X}_{κ} is \mathscr{F} -homogeneous.

Theorem

Assume A, $B \subseteq \mathfrak{X}_{\kappa}$ are such that A, $B \in \mathscr{T}_{<\kappa}$ and \mathfrak{X}_{κ} is \mathscr{F} -tightly filtered over both A and B. Then every isomorphism between A and B extends to an

automorphism of \mathfrak{X}_{κ} .

Corollary

The object \mathfrak{X}_{κ} is \mathscr{F} -homogeneous.

Theorem

Assume A, $B \subseteq \mathfrak{X}_{\kappa}$ are such that A, $B \in \mathscr{T}_{<\kappa}$ and \mathfrak{X}_{κ} is \mathscr{F} -tightly filtered over both A and B.

Then every isomorphism between A and B extends to an automorphism of \mathfrak{X}_{κ} .

Corollary

The object \mathfrak{X}_{κ} is \mathscr{F} -homogeneous.

About the proof

Theorem

Assume κ is regular. Then the category $\mathscr{T}_{<\kappa}$ (with relative \mathscr{F} -complexes) has a κ -Fraïssé sequence. Its limit is \mathfrak{X}_{κ} .

< ロ > < 同 > < 回 > < 回 >

About the proof

Theorem

Assume κ is regular. Then the category $\mathscr{T}_{<\kappa}$ (with relative \mathscr{F} -complexes) has a κ -Fraïssé sequence. Its limit is \mathfrak{X}_{κ} .

< 回 > < 三 > < 三 >

The singular case

Definition

A PL-functor is a covariant functor $F: L \to \mathscr{F}$ such that *L* is a tight lattice and for every $a, b \in L$ the following diagram is a pushout in \mathscr{L} .

$$F(b) \longrightarrow F(a \lor b)$$

$$\uparrow \qquad \uparrow$$

$$F(a \land b) \longrightarrow F(a)$$

Theorem

Given $X\in \mathscr{L}$, the following properties are equivalent:

①
$$X \in \mathcal{T}_{\kappa}$$
 for some κ ,

②
$$X = \lim F$$
, where $F \colon L \to \mathscr{F}$ is a PL-functor.

The singular case

Definition

A PL-functor is a covariant functor $F: L \to \mathscr{F}$ such that *L* is a tight lattice and for every $a, b \in L$ the following diagram is a pushout in \mathscr{L} .

$$F(b) \longrightarrow F(a \lor b)$$

$$\uparrow \qquad \uparrow$$

$$F(a \land b) \longrightarrow F(a)$$

Theorem

Given $X \in \mathcal{L}$, the following properties are equivalent:

•
$$X \in \mathscr{T}_{\kappa}$$
 for some κ ,

2
$$X = \lim F$$
, where $F : L \to \mathscr{F}$ is a PL-functor.

∃ ► < ∃ ►</p>

4 6 1 1 4

A PL-functor $F: L \to \mathscr{F}$ is κ -Fraïssé if:

given a ∈ L, given S ∈ [L]^{<κ} such that a < s for s ∈ S, given an embedding f: F(a) → y with y ∈ ℱ, there exists b > a such that b ∧ s = a for every s ∈ S, and the bonding map

$$F_a^b \colon F(a) \to F(b)$$

is isomorphic to f.

Theorem

A κ -Fraïssé PL-functor exists as long as $\kappa \ge |\mathscr{F}|$. It is unique, up to an isomorphism.

A PL-functor $F: L \to \mathscr{F}$ is κ -Fraïssé if:

given a ∈ L, given S ∈ [L]^{<κ} such that a < s for s ∈ S, given an embedding f: F(a) → y with y ∈ ℱ, there exists b > a such that b ∧ s = a for every s ∈ S, and the bonding map

$$F_a^b \colon F(a) o F(b)$$

is isomorphic to f.

Theorem

A κ -Fraïssé PL-functor exists as long as $\kappa \ge |\mathscr{F}|$. It is unique, up to an isomorphism.

3

く 戸 と く ヨ と く ヨ と

Fact

$\mathfrak{X}_{\kappa} = \lim F$, where F is a κ -Fraïssé PL-functor.

イロト イヨト イヨト イヨト

Application: a short proof of Shchepin's theorem

Theorem (Shchepin 1976)

A projective Boolean algebra if free if and only if it is homogeneous with respect to density.

Short proof.

- Fix a projective algebra B, homogeneous by density.
- ② Check that given a tight embedding $A \subseteq A[x]$ with $|A| < |\mathfrak{B}|$, given an embedding $e: A \to \mathfrak{B}$, there exists an embedding $f: A[x] \to \mathfrak{B}$ such that $f \upharpoonright A = e$.

3

≌⊡∞™----S THE END

2

<ロ> <問> <問> < 同> < 同> < 同> 、

References

- A. AVILÉS, C. BRECH, A Boolean algebra and a Banach space obtained by push-out iteration, Topology Appl. 158 (2011) 1534–1550
- W. KUBIŚ, *Fraïssé sequences: category-theoretic approach to universal homogeneous structures*, preprint http://arxiv.org/abs/0711.1683

12 N A 12